Металлоизделия в Луганске и области

Металлокострукции, входные двери, заборы, оградки,
решетки, лестницы, ковка, модули,
вальеры, декоративная мебель

На практике выход основного металла на катоде всегда ниже теоретического.

Отношение массы фактически выделившегося металла к его теоретическому количеству, которое должно было бы выделиться по закону Фарадея, называют выходом по току. Этот показатель выражают обычно в процентах. Физический смысл этого показателя можно определить как степень использования протекающего через электролизер тока на совершение основной электрохимической реакции. Так, при выходе по току, равном 95 %, 5 % затраченной электроэнергии расходуется на побочные электрохимические процессы. С повышением выхода по току увеличивается производительность процесса электролиза и снижается удельный расход электроэнергии.

Расход электроэнергии при электролизе зависит также от падения напряжения на ванне, которое при электролитическом рафинировании меди возникает главным образом в результате преодоления сопротивления электролита (60... 65 % от общего) и токоподводящих шин, контактов (~ 20 %). Напряжение на ванне можно рассчитать по формуле: U= IR1 + IR2 + IR3, где I - сила тока, подводимого к ванне, A; Ri, R2, R3 - электрическое сопротивление соответственно электролита, шин, контактов.

Из формулы видно, что напряжение на ванне будет возрастать с увеличением силы тока, т.е. плотности тока. При плотностях тока 250... 300 А/м2, выходе по току около 95 % и напряжении на ваннах 0,25... 0,3 В практический удельный расход электроэнергии на современных медеэлектролитных заводах составляет 230 ... 350 кВт • ч на 1 т меди.

Как уже отмечалось, электролитическое рафинирование меди направлено на глубокую очистку ее от примесей. Имеющиеся в анодной меди примеси в процессе электролиза ведут себя по- разному. Их поведение определяется положением в ряду напряжений.

Медь, имеющая нормальный потенциал, равный +0,34 В, по отношению к водороду электроположительна. Правее ее в ряду напряжений находятся лишь благородные металлы. Разряд ионов водорода на катоде, приводящий к снижению выхода по току

при электролизе меди, возможен только при недостаточной концентрации ионов меди.

Все присутствующие в анодной меди примеси по их электрохимическому поведению можно разбить на четыре группы.

К первой группе относятся наиболее электроотрицательные по сравнению с медью примеси, которые практически полностью растворяются на аноде и могут попасть в катодную медь в виде межкристаллических включений (захватов) раствора особенно при чрезмерном повышении их концентрации в электролите (вблизи катода). К ним относятся железо, никель, кобальт, цинк, олово, свинец. Для предотвращения загрязнения катодов этими примесями часть электролита нужно выводить на очистку (регенерацию). Исключение из числа примесей этой группы составляют олово и свинец, которые выпадают в шлам вследствие образования нерастворимых в сернокислом электролите соединений - Sn(OH)2 и PbSO4.

Вторую группу примесей образуют мышьяк, сурьма и висмут. Их электродные потенциалы близки к потенциалу выделения меди, и поэтому их переход в катодные осадки наиболее вероятен. Для предотвращения попадания этих наиболее опасных примесей в катодные осадки необходимо не допускать повышения их концентраций выше предельно допустимых. На практике это достигают выводом мышьяка, сурьмы и висмута из раствора при регенерации электролита.

К третьей группе относятся благородные металлы, которые в условиях электролиза меди, как более электроположительные, анодно не растворяются. По мере растворения анода они теряют с ним механическую связь и на 98 ... 99 % осыпаются в шлам.

Примеси четвертой группы, представленные растворенными в анодной меди химическими соединениями типа Cu2S, Cu2Se, Cu2Te, вследствие электрохимической нейтральности и малой растворимости в электролите также практически полностью переходят в шлам подобно благородным металлам.

Для электролитического рафинирования применяют железобетонные ванны ящичного типа, имеющие в плане удлиненное прямоугольное сечение. Для повышения коррозионной стойкости ванн против воздействия сернокислого электролита внутреннюю часть ванн облицовывают винипластом, стеклопластиком, полипропиленом, кислотоупорным бетоном и другими кислотостойкими материалами.

В настоящее время чаще всего электролитные ванны группируют в блоки по 10... 20 ванн, а затем - в серии, состоящие, как правило, из двух блоков. Все электроды в отдельных ваннах - катоды и аноды - включены параллельно, а ток через блоки и серии проходит последовательно. Поперечный разрез блока ванн для электролитического рафинирования приведен на рис. 79.

Геометрические размеры ванн зависят от размеров и числа завешиваемых в них электродов. Современные ванны имеют длину 3,5 ... 5,5 м, ширину 1... 1,1 м и глубину 1,2 ... 1,3 м.

Форма заказа

Цветная металлургия

Горная проммышленность