Металлоизделия в Луганске и области

Металлокострукции, входные двери, заборы, оградки,
решетки, лестницы, ковка, модули,
вальеры, декоративная мебель

Переработка никелевого файнштейна на огневой никель

Технология получения огневого никеля из файнштейна включает две стадии окислительного обжига (с промежуточным обезмеживанием огарка) и восстановительную плавку оксида никеля на металл.

Цель окислительного обжига файнштейна - удаление из него серы до содержания менее 0,02 % и перевод никеля в NiO.

Глубокое удаление серы требует высоких температур, а сульфид никеля Ni3S2 легкоплавок (ґпл = 788 °С). Это и вынуждает проводить окисление файнштейна в две стадии. Вначале обжигпроводят в печах КС с целью удаления серы до 1...1,5%. Для повышения тугоплавкости шихты измельченный файнштейн смешивают с оборотной (оксидной) пылью. Это вместе с разобщенностью частиц, витающих в КС, позволяет вести первую стадию при 950 . . . 1000 °С. Окисление файнштейна протекает по реакции

2Ni3S2 + 702 = 6NiO + 4S02. (43)

Печи КС с площадью пода 7... 8 м2 для первой стадии обжига никелевого файнштейна имеют ряд конструктивных особенностей (рис. 87). Они, во-первых, имеют увеличенный диаметр вверху, что снижает скорость газов на выходе из печи и уменьшает пылевынос богатого никелем огарка. Кроме того, разгрузка огарка проводится не через сливной порог, а с уровня пода и регулируется стопорным ИЛИ дисковым затвором.

К горячему огарку (700 ... 800 °С) по выходе из печи подмешивают 10 ... 15 % природного сильвинита (NaCl, KCl) и смесь подвергают сульфатхлорирующему обжигу в трубчатом реакторе-холодильнике. Процесс идет за счет физической теплоты огарка. При обжиге хлористый натрий разлагается по реакции:

Продукты этой реакции способствуют переводу меди в форму водорастворимых хлоридов и сульфатов. Никель и кобальт при этом остаются в оксидном состоянии.

Из реактора огарок направляют на обезмеживание, заключающееся в выщелачивании меди горячей подкисленной водой ме-

тодом просачивания. После выщелачивания огарок с остаточным содержанием 0,3... 0,4 % Cu направляют на окончательный обжиг в трубчатую вращающуюся печь (рис. 88). Печь отапливается природным газом или мазутом, которые с целью создания в печи окислительной атмосферы сжигают с большим избытком воздуха.

Огарок из бункера питателем подается в хвостовую часть печи с температурой ~ 800 “С. Далее он движется навстречу топочным газам, содержащим 8... 10 % кислорода и нагретым до 1300 °С. Высокая температура и присутствие в газах кислорода приводят к почти полному окислению серы (до 0,02 % и менее). Расход топлива на второй обжиг достигает 40 % от массы огарка. Полученный в трубчатых печах оксид никеля (огарок) в среднем содержит, %: Ni 78; Cu 0,4; Co 0,4 .. . 0,5; Fe 0,3 .. . 0,4.

Из обжиговой печи оксид никеля с температурой 900... 1000 °С по течке ссыпается в трубчатый реактор, куда вводят также 8 % нефтяного кокса. За счет физической теплоты огарка в холодильнике по реакции NiO + С = Ni + CO оксид никеля частично (до 40... 50 %) восстанавливается и из реактора выходит металлизированный огарок с содержанием- 82... 86 % Ni, что ускоряет и удешевляет его дальнейшую переработку в электропечах.

Процесс восстановительной электроплавки осуществляют в дуговых электрических печах за счет теплоты, выделяющейся при горении дуги между угольными (графитовыми) электродами и металлом. Для получения никеля из окисленных руд применяют трехэлектродные круглые печи вместимостью 4,5... Ют (рис. 89).Они работают периодически с продолжительностью цикла от 6 до 8 ч.

Технологический процесс электроплавки оксида никеля состоит из ряда операций:

шихтовки оксида никеля с восстановителем;

загрузки шихты и ее расплавления;

доводки металла;

выпуска и грануляции никеля.

Во время приготовления шихты оксид никеля смешивают в заданной пропорции с твердым восстановителем, чаще всего нефтяным коксом, содержащим 0,2 ... 0,5 % S.

При расплавлении шихты происходит восстановление оксида никеля до металла и одновременно его науглероживание за счет растворения углерода и образующегося карбида Ni3C. При содержании ~ 2,2 % С температура плавления металла снижается до 1315 С. Это сокращает время расплавления шихты и снижает расход электроэнергии.В конце плавки избыток углерода удаляют путем доводки металла забрасыванием в печь оксида никеля. При этом происходит взаимодействие карбида никеля с NiO по реакции Ni3C + + 2NiO = 5Ni + CO2.

При доводке с целью предотвращения вторичного окисления никеля кислородом печной атмосферы в печи наводят известковый шлак. Этот шлак позволяет также очистить металл от серы за счет взаимодействия по реакции

Ni3S2 + 2СаО + 2С = 3Ni + 2CaS + 2С0.

Образующийся сульфид кальция не растворяется в никеле и переходит в шлак. После снятия шлака металл разливают, наклоняя печь в сторону разливочного желоба.

Готовый металл льют в грануляционные бассейны с проточной холодной водой, на дне которых установлена дырчатая металлическая корзина. Полученные гранулы никеля извлекают из бассейна, сушат, упаковывают в фанерные бочки и отправляют потребителю.

Огневой никель до ГОСТ 849- 70 должен содержать суммарно никеля и кобальта не менее 98,6 % (Н-3) и кобальта не более 0,7 %.

Рассмотренная технологическая схема хорошо освоена на практике. Это, пожалуй, ее единственное достоинство. Главные ее недостатки заключаются в сложности (многостадийности) технологии, высоком расходе дорогостоящего и дефицитного кокса, низком извлечении никеля и особенно кобальта и, наконец, к полной потере всего железа руды.

Форма заказа

вторичная недвижимость в Болгарии (квартиры от 19 тысяч евро)

Цветная металлургия

Горная проммышленность